

Biodiversity in the Patent System: Senegal

A country study of genetic resources and traditional knowledge in the patent system of relevance to Senegal

Prepared for: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) Contract Number: 81156131 June, 2013

Authors

Paul Oldham Colin Barnes Stephen Hall

One World Analytics is a trading name of POMC Consulting Ltd. UK.

Introduction

This report presents the results of analysis of patent activity for genetic resources and traditional knowledge from Senegal. The report is divided into three sections:

Section 1 provides an overview of biodiversity in Senegal based on information from the Global Biodiversity Information Facility and introduces the patent data.

Section 2 provides a general overview of patent activity for species known to occur in Senegal in the period 1976-2010. This is followed by detailed analysis of patent documents that make reference to Senegal and data based on species that are limited to distribution in Senegal.

Section 3 provides a set of short summaries for species that are a focus of patent activity. This information will also be made available online for further research through the Access and Benefit Sharing Patent Index (ABSPAT).¹

The report was prepared using large scale text mining of patent data for species names and country names. This data was then combined with taxonomic information from the Global Biodiversity Information Facility. Additional patent research was conducted using the commercial Thomson Innovation database and processed using a variety of software tools.

Patents are an important indicator of investments in research and development directed to the development of commercial products. The aim of the report is to identify potential opportunities for economic development in support of conservation by identifying existing research and development involving species from Senegal. The research did not investigate the terms and conditions under which patent applicants obtained the genetic resources and traditional knowledge disclosed in the patent document. Therefore the report does not consider the problem of biopiracy or misappropriation of genetic resources and traditional knowledge.

The research was limited to searches of patent data from the United States, the European Patent Office and the international Patent Cooperation Treaty in the period 1976-2010. As such, the research is limited to the major patent offices for this period. We do not consider patent activity prior to 1976 or after 2010 except through patent family information and citation data. As such the report provides a baseline for patent activity involving species from Senegal as a basis for further research.

Our research focused primarily on documents that make reference to Senegal and to cases where existing distribution data suggests Senegal is a likely source for the species. This imposes two limitations on the research. First, we focus on identifying species that are a focus of existing research and development. However, the report does not seek to provide the complete global patent landscape for an individual species. Second, because we focused on identifying species from a country we did not search patent data for references to regions (i.e. Africa) or sub-regions (i.e. Southern Africa) in the patent data. To address this issue we deliberately highlight cases where a species is distributed in more than one African country.

¹ ABSPAT is available at <u>http://www.abspat.net</u>

This report is one in a series of reports on patent activity for species from African countries. The following observations are based on the research for the six African country reports to date and form the main recommendations arising from the research.

Taxonomic Research:

- There is a need to improve the availability of taxonomic information for each country. In the absence of taxonomic information it is not possible to identify genetic resources that are relevant to a particular country in patent data and any relevant opportunities for economic development. African countries could consider giving greater priority to taxonomic research and making taxonomic information available through GBIF;
- 2. Georeferencing of the coordinates for the locations of species is an important standard in modern biodiversity research. Georeference data can be used to identify where species have been recorded in a country and also where biodiversity research has been concentrated. In our view georeferencing is an underutilized tool for identifying where species are located as a basis for engaging with indigenous and local communities to consider potential development opportunities. We recommend greater attention to georeferencing and its use for engagement with relevant indigenous and local communities;
- 3. Taxonomic research does not attract investment because it appears to be remote from economic considerations. In practice taxonomic information is vital to identifying opportunities for development that is supportive of the objectives of the Convention on Biological Diversity and its Nagoya Protocol.
- 4. Taxonomic information is also important for the capacity of countries to monitor compliance with the Nagoya Protocol by improving baseline data on the species within a country. Advancing knowledge and understanding of biodiversity and the traditional knowledge of indigenous and local communities has an important role to play in long term monitoring under the Nagoya Protocol.

The Patent System:

- Patent documents are frequently unclear on the precise origin or source of genetic resources and associated traditional knowledge. In addition very limited information is available on the terms and conditions of acquisition of genetic resources and traditional knowledge. This could be improved through enhanced disclosure of origin measures as advanced by the African Group and discussed in greater detail elsewhere;²
- 2. Species are commonly distributed in more than one country. It is important that African countries include requirements in access and benefit sharing agreements to clearly specify the source of genetic resources and associated traditional knowledge in any patent applications that may arise under the terms of an agreement. When combined with the enhanced disclosure measures noted above this would greatly improve capacity to monitor patent activity under the terms of the Nagoya Protocol;
- 3. One of the major issues that emerged in the research is the problem of *essential incorporation* of species into patent claims. Patent applicants frequently list very large numbers of species, or make reference to genera and families, with the purpose of incorporating all members of a genus or family into the scope of the patent claims. Typically these applications did not involve collection or use of many of the species that are listed. The aim of essential incorporation is to prevent others from using compounds, extracts or ingredients from these species in similar inventions or products. Where granted these patents are likely to have negative consequences for researchers

² Oldham, P & Burton G (2010) Defusing Disclosure in Patent Applications. UNEP/CBD/COP/10/INF/44

and producers in African countries seeking to develop and export similar products from these species. In our view, patent claims for components of organisms should be limited to the species from which the compound or extract was isolated by the applicants and not extend to members of the genus or entire families. Furthermore, in our view essential incorporation is anticompetitive and action should be considered to stop or severely restrict this practice.

4. In some cases patent activity may involve species that are vulnerable, endangered or CITES listed. In considering the possibilities for economic development identified in patent data it is also important to identify and assess the conservation status of the species concerned in order to support the objectives of the Convention on Biological Diversity.

Patents have frequently been viewed with suspicion within the biodiversity policy community as examples of the inequitable exploitation of resources from biodiversity rich developing countries. Our research demonstrates that patent data can also be turned to positive purposes to identify potential opportunities for economic development in Africa. We hope that this information will prove to be useful to African countries.

Senegal

Area:

196,722 sq. km **Coastline:** 531km

Climate:

Tropical; hot, humid; rainy season (May to November) has strong southeast winds; dry season (December to April) dominated by hot, dry, Harmattan wind

Geography:

Generally low, rolling, plains rising to foothills in southeast.

Senegal has a number of vegetation zones: Sahel, tropical rainforest and mangroves. Most of the southern arm of the country is classed as being of the Guinean forest-savanna mosaic.

Biodiversity in Senegal and Patent Activity:

Data for biological diversity was obtained from the Global Biodiversity Information Facility (GBIF). GBIF is an international government-initiated resource that provides open access to the most comprehensive quantitative data of species across time and space presently available. All data is submitted by participating public collections around the world who share biodiversity information.

Using this resource we have obtained biodiversity records for species which occur in Senegal. It should be noted that the usefulness of this data in determining the actual distribution of a given species depends on the comprehensiveness of the data submitted by GBIF participants. Therefore we would stress that the absence of records should not be interpreted as indicating an absence of a given species, and similarly that a recorded species that only appears from one country should not be regarded as evidence of endemism. All reasonable efforts in identifying endemic species were made from alternative sources during the compilation of this report.

GBIF presently records 5,988 species for Senegal and 12,729 georeferenced records of the locations where these species occur in Madagascar.¹

We identified a total of 127,971 documents containing species known to be distributed in Senegal. Of these, 532 made some form of reference to Senegal. These documents were manually reviewed in MaxQDA qualitative data analysis and tagging software to identify documents specifying a source or origin in Senegal.

The 532 documents that made a specific reference to Senegal contained 1,489 species. These documents were manually reviewed in MaxQDA data analysis software and through this process we were able to identify species where it was definitively stated that they had been collected, sampled or otherwise obtained from Senegal.

In addition, using GBIF distribution data we identified 18 species where GBIF presently records distribution only in Senegal. These species appeared in 987 patent documents

¹ In total 6,327 species names were recorded for Senegal in GBIF including synonyms. These species are then compiled onto accepted scientific names.

where Senegal was not explicitly mentioned. The idea behind this was to identify cases where a species (based on available distribution data) was likely to have come from Senegal and thus be regarded as a species of likely or potential significance for Senegal. For the sake of simplicity we call data where Senegal was specifically mentioned along with a species "Origin" data. We call data identified based only on distribution information "Distribution." Based on further research we sought to establish whether an identified species was endemic to Senegal (Endemic) or known to be distributed in multiple countries (Cosmopolitan).

Biodiversity and Distribution

Much of the data submitted to GBIF includes geographical coordinates indicating where the recorded species was located. Using this data we are able to show the physical distribution across Senegal of all GBIF recorded species. Plate 1 shows two maps. The upper map shows plotted points, each indicating a GBIF record. The points are coloured to indicate the kingdom to which the species belongs. It should be noted that this geographical information is raw data as submitted to GBIF by participating recorders. It has not been cleaned to remove any human errors when inputting to the GBIF database (an example of such an error might be where a longitudinal coordinate has been recorded as a + rather than a -). The lower map shows major settlements and roads. The lower map also includes the location of the Niokola Koba National Park, a statutory conservation site which can be expected to be of significance for biodiversity. A larger version of the distribution map can be found in the appendix of this country summary.

Plate1. Distribution of GBIF records from Senegal (upper map) and major settlements and roads (lower map) (map courtesy of Bing Maps). Each colour point represents a taxonomic kingdom for a given record.

It is very interesting to compare the two maps. The distribution map shows that records are not uniformly dispersed across the country. The larger part of the country to the north and east is very poorly recorded. Most of the records come from the coastal regions and particularly in the area of Dakar and Kaolack, the most populous cities. There are significant records of marine species in the area of Dakar and along the coast north of that city. There are a number of marine protected areas along the Senegalese coast which reflects both the biodiversity of the seas along the West African coast and the threats to that diversity (through overfishing for example, as the West African coast is one of the most economically important fisheries in the world). In the south of the country, which is a part of the Guinean forest savanna mosaic, is the Niokolo Koba National Park. There is a notable increase in the density of records at this location. Another feature of these mapped distribution records are the strings of data points which cross the country. It can be seen that the strings of data points follow closely the routes of major roads. This pattern of record locations suggest that there are practical restrictions which have prevented collection of data across a broader geographical range. This in turn leads to the likelihood that biodiversity records for Senegal are far from comprehensive in describing the fauna and flora of the country.

GBIF presently records 6,327 species names known to be present in Senegal. This list is dominated by plants and animals which account for almost 6,000, as can be seen in Table 1.

Table 1: Showing the number of species in Senegal by kingdom using GBIF data.

Using global data it is possible to examine the wider distribution of Senegalese species. Plate 2 shows where records exist across the globe for such species. Species which are found in two or more countries are referred to as being 'cosmopolitan'. Each pie represents the number of occurrences of cosmopolitan species which are found in Senegal and is segmented by kingdom. It can be seen that a small number of species have a very wide global distribution (it should be noted that some of these records may originate from research institutions or collections and therefore do not represent native or naturalised distribution). It can also be seen that many species are pan-sub-Saharan African in range, particularly across the Sahel in western Africa.

Plate 2: Global distribution of Senegalese species shown by the number of species in GBIF.

Senegal in the Patent System

As of 2013 there were 2,541 patent documents in the main patent jurisdictions (European Patent Office, the United States, and the Patent Cooperation Treaty) that specifically mention Senegal.² This provides a general overview of references to Senegal in the patent system across all areas of invention. Only a proportion of these documents will refer to species collected in, or sourced from, Senegal. In addition, patent applicants will make reference to species that originate from Senegal but will not mention Senegal as the source of genetic resources or traditional knowledge.

Our aim in this section is to provide a brief overview of patent activity for genetic resources of relevance to Senegal. We focus on patent activity at the main patent offices in the period between 1976 and 2010. We then examine the results of research to identify genetic resources and traditional knowledge that originate from Senegal. In approaching patent activity for genetic resources from Senegal we focus on three categories of data.

- 1. Species that are known to be distributed in Senegal but are also distributed elsewhere in the world. This provides an overview of global patent activity for genetic resources of relevance to Senegal.
- 2. Species where a direct reference is made to the collection or origin of a species from Senegal. This data is based on a review of patents that make reference to a species known to be distributed in the country and the country name.
- 3. Species where available distribution data suggests that a sample is likely to have originated from Senegal. This data is known as Distribution data and refers to cases where GBIF presently only records a species as occurring in Senegal and no other country. Because taxonomic information is incomplete this data provides a clue rather than proof that a species originated from Senegal.

We begin our analysis with an overview of biodiversity that is known to occur in Senegal in the patent system and then turn to data on species originating from Senegal.

Biodiversity in Senegal in the Global Patent System

Senegal shares a significant proportion of its known biodiversity with other countries in Africa and around the world. Plate 3 provides an overview of patent activity for species that are known to occur in Senegal and other countries around the world. This overview provides information on trends in applications and grants, the top species appearing in patents that are known to occur in Senegal, top applicants or assignees and technology areas.

In total we identified approximately 5,445 species in patent data from the major jurisdictions that are known to occur in Senegal.³ This data is relevant for Senegal because it demonstrates that researchers and companies are conducting research and development on species that are known to occur in Senegal. As Plate 3 makes clear research and development is taking place across a range of technology sectors and is targeted to a variety of markets.

² Source: Thomson Innovation.

³ In total we identified 5,515 species in the data. The 5,445 figure excludes common model organisms such as E. coli and Arabidopsis thaliana that are globally distributed and are used as research tools in biotechnology. These species appear prominently in patent data for all countries.

Species

Trends

The top species in patent activity of relevance to Senegal include Acacia senegal (a synonym for Acacia galpinii) and Acacia seyal. These two acacias are followed by *Plasmodium falciparum*, *P. vivax* and *P. yoelii* (malaria parasites). Two other species of note include Aloe vera (commonly used in cosmetics and other products) and Scutellaria baicalensis which is used in Chinese traditional medicine. As this brief list suggests, patent activity typically targets pathogens such as *Plasmodium* malaria parasites. In addition we observe important species with a range of uses such as Aloe, Scutellaria, Vitis vinifera (grape) and Nicotiana tabacum (tobacco plant).

The overview of patent applicants (assignees) reveals that top assignees include the Institute Pasteur and the Coca Cola company. In the case of the Institute Pasteur this is almost entirely attributable to their research and development on malaria (notably *Plasmodium falciparum*), viruses and bacteria. In the case of the Coca Cola company this reflects activity around *Acacia senegal* (*A. galpinii*) and *Acacia seyal*. As this makes clear, species may appear in the portfolios of different organizations for a variety of reasons.

To gain a more focused view of activity we now turn to the results of research to identify organisms appearing in patents that were directly collected in Senegal or where distribution data suggests that Senegal is the likely source.

Species from Senegal in Patent Data

In total we identified 18 species of organisms that were directly sourced from, or potentially originate from, Senegal based on distribution data. Plate 4 displays the top species for Senegal that appear in patent data based on a manual review of patent documents. In the next section a summary is provided for each species. This data will also be made available online to allow for further exploration of each case.

Plate 4 reveals that based on detailed analysis of patent documents certain species move to the fore in patent data. With only two exceptions these species were identified in Distribution data and follow on research rather than through specific reference to the collection or sourcing of the species in Senegal.

Balanites aegyptiaca is found in much of the Sahel-Savannah region of Africa and is a common tree in Senegal. It is the source of desert date with other parts of the tree reportedly used during famines. The fruit is used in traditional medicines and the bark is reported to have insecticidal and anti-parasitic properties in addition to use as an arrow poison. This species therefore has a wide range of potential uses. Patent activity making reference to Senegal in the main jurisdictions until 2010 was limited to 2 documents from Ben-Gurion University in Israel focusing on the identification and use of saponin compounds from the species (US20080287662A1, WO2006137069A2). The claimed potential uses of components of this species include pesticidal compositions, a method of controlling the growth of mosquito larvae, skin care and cosmetic products and an agrochemical among other potential products. However, no patent grant is presently recorded for these applications. Nevertheless, this is clearly an important species in Senegal and elsewhere in Africa. This is reflected in a wider portfolio of patent documents for this species consisting of 75 documents in the period to 2013.

Species

Trends

Publication Year

Biocides	0 500 Publications				
recimology Areas	· -	Cosmopolitan	Distribution	plantae	Holarrhena floribunda
	~	Cosmopolitan	Origin	plantae	Aframomum melegueta
Application	2	Cosmopolitan	Distribution	animalia	Merluccius polli
61 61 61 61 61	2	Cosmopolitan	Distribution	bacteria	Halanaerobium saccharolytic bacteria
96 96 97 93 93 90 90 90 90 90 90 90 90 90 90 90 90 90	2	Cosmopolitan	Distribution	animalia	Callosobruchus subinnotatus
	2	Cosmopolitan	Origin	plantae	Balanites aegyptiaca
	в	Cosmopolitan	Distribution	fungi	Leptosphaeria thompkinsii
50 -	4	Uncertain	Distribution	bacteria	Desulfohalobium retbaense
	9	Cosmopolitan	Distribution	animalia	Hyalomma rufipes
N	14	Uncertain	Distribution	bacteria	Clostridium thermopalmarium
100- 100-	14	Uncertain	Distribution	bacteria	Allorhizobium undicola
о 9 Я	17	Cosmopolitan	Distribution	bacteria	Sinorhizobium terangae
ords	24	Uncertain	Distribution	fungi	Leptosphaeria senegalensis
150	54	Cosmopolitan	Distribution	bacteria	Mycobacterium senegalense
	58	Cosmopolitan	Distribution	bacteria	Rhizobium undicola
	59	Cosmopolitan	Distribution	bacteria	Sinorhizobium saheli
200	429	Cosmopolitan	Distribution	plantae	Acacia senegal
	598	Cosmopolitan	Distribution	animalia	Cordylobia anthropophaga
		Distribution	Data Type	Kingdom	Species

966 L

Biocides

A second species originating from Senegal is *Aframomum melegueta*. This species is known variously as Grains of Paradise and Guinea pepper and was historically traded across the Sahara to Europe in the 14th and 15th Centuries before falling into disuse. Today, the species is used in meals as an alternative to pepper and is used in beers such as speciality beers produced by Samuel Adams in the United States and specialist gins. As such it occupies a niche in both the food and beverage industries. In 1998 Peya Biotech submitted an international patent application for "Aframomum Seeds for Improving Penile Activity" for use in combination with an alcoholic drink (WO2000035466A1). Once again no patent grant has been observed for this claimed invention. Instead, the data provides a useful indication that a species has potential for economic development. This is reflected in a wider portfolio of patent documents for this species consisting of 174 records in the period to mid-2013.

A third species of interest is *Desulfohalobium retbaense*. This species is an anaerobic sulfate-reducing Gram negative bacterium. The scientific literature reveals that this was isolated from the sediment of the pink hypersaline Lake Retba in Senegal.⁴ In 2005 Luca Technologies submitted patent applications at the US Patent Office and under the Patent Cooperation Treaty (US20080182318A1,WO2009088760A1) The patent applications focus on creating materials with "enhanced hydrogen content from anaerobic microbial consortia including desulfuromonas or clostridia". The patent application actually focuses on using microbial consortia to transform carbonaceous materials in geological formations into molecular hydrogen that could then become the basis for fuel. *Desulfohalobium retbaense* is mentioned as one in a list of *Desulfohalobium* that it is claimed could be used for this purpose. As such the applications refer to the potential use of a species that is known to have been first isolated in Senegal rather than its actual use to address energy needs. The wider portfolio of patent documents for this species totals 8 documents in the period to 2013.

A fourth species of interest is *Holarrhena africana*, a shrub that is native to much of West Africa. This species has been a focus of patent activity for steroidal compounds to inhibit melanogenesis and skin pigmentation by Skinmedica Inc and the University of New York School of Medicine (US20100040568A1). The wider portfolio of patent documents in the period to 2013 consists of 3 documents, suggesting that, to date, this species has been a limited focus of research and development.

Finally, two species stand out at the top of the data for Senegal. The first is *Cordylobia anthropophaga*, a blow fly known as the Mango fly or Tumbu fly which causes Myiasis in large mammals including humans in Africa. Myiasis is a neglected disease and patent activity may potentially highlight possible approaches to addressing problems caused by the Tumbu fly that have not previously been considered within countries affected. In considering pathogens and pests in the data for Senegal it is important to recall that research and development directed to addressing problems in the African region could make an important longer term contribution to economic development.

The second species that features prominently in the data is *Acacia senegal*. We treat this example last for two reasons. References to *Acacia senegal* dominate references to the term Senegal in the patent system. However, as will be seen, in reality *Acacia senegal* is widely distributed in Africa and in a smaller number of countries around the world. What

⁴ Ollivier, B et. al (1991) Desulfohalobium retbaense gen. nov., sp. nov., a Halophilic Sulfate-Reducing Bacterium from Sediments of a Hypersaline Lake in Senegal. *International Journal of Systematic and Evolutionary Microbiology*. 41 (1): 74-81

follows is a brief case history of this major species drawing directly on data from Kew Gardens and GBIF.⁵

Focus Species: Acacia senegal

Conservation status:

None of the four varieties of this species are threatened. IUCN status is Least Concern.

Habitat:

Dry savanna (grassland) and Sahel (desert edge), scattered, often in thickets, and sometimes in extensive pure stands. It can tolerate five to eleven months of drought. It can survive temperatures of 45°C, dry wind and sandstorms, but cannot withstand frost. The altitude ranges from 100 to 1700m above sea level in the Sudan to 1950m around Nakuru in Kenya.

About the Species:

Gum arabic is harvested from *Acacia senegal* because it has superior properties over other 'acacias', and hence it is this gum that has dominated the international trade. Currently the biggest markets for A. senegal gum are the European Union, North America (mainly the USA) and the Indian Subcontinent (mainly India). The UK imported 1,253 tons in 1998. Sudan, Nigeria and Chad are the three biggest sources of this gum.

Acacia senegal is found growing in Mauritania, Senegal, The Gambia, Ghana, Burkina Faso, Côte d'Ivoire, Mali, Niger, Nigeria, Cameroon, Democratic Republic of the Congo, Central African Republic, Rwanda, Chad, Sudan, Ethiopia, Somalia, Uganda, Kenya, Tanzania, Mozambique, Angola, South Africa, Namibia, Oman, Pakistan, and India. It has been introduced to Egypt, Australia, Puerto Rico, the Virgin Islands and elsewhere.

Occurrence overview for Acacia senegal (GBIF)

<u>http://www.kew.org/plants-fungi/Acacia-senegal.htm</u> and <u>http://data.gbif.org/species/</u> 2978697/

There are four varieties of *A. senegal.* These differ in the presence or absence of hair on the axis of the flower spike, colour of the axis, shape of pod tips, number of pinnae pairs, trunk branched or not branched from the base and shape of the crown, as well as their geographical distribution.

The germination of seed is slow and young plants usually have to contend with competition from grass and browsing stock. Those that survive begin to yield gum at three to four years of age. The best yields in West Africa come from trees 12 to 15 years old and up to 20 cm diameter. In Kordofan trees aged four years are opened for tapping, which continues to the age of 20 or older, but elsewhere in Sudan six to 18 years is usual. The best yields come from trees in areas with an annual rainfall of only 250 to 300 mm. Trees die at an age of 25 to 30 years, by which time they will have succumbed to borers and termites.

The Kew Gardens SEPASAL database records 196 local names for this plant, and other common names include: tur, tulh, harheyr (Jibbali), temmar (Dhofari arabic), Sudan gum, Kordofan gum (English), gommier, gommier vrai, gomme blonde, gomme blanche (French), khor (Punjab), kumta (Rajputana), Senegal gum, Somali gum (in the trade industry).

Uses:

The use of gum arabic (or gum acacia), which is derived from an exudate from the bark, dates from the first Egyptian Dynasty (3400 B.C.). It was used in the production of ink, which was made from a mix of carbon, gum and water. Gum arabic has been used for at least 4,000 years by local people for the preparation of food, in human and veterinary medicine, in crafts, and as a cosmetic. *Acacia senegal* produces the only acacia gum evaluated toxicologically as a safe food additive. Nowadays the gum is present in a wide range of everyday products. 60-75% of the world production of gum arabic is used in the food industry and in human and animal medicine.

In the food industry gum arabic is used as a flavour fixative and emulsifier, to prevent crystallisation of sugar in confectionery, as a stabiliser in frozen dairy products, for its viscosity and adhesive properties in bakery products, and as a foam stabiliser and clouding agent in beer.

In pharmaceuticals, it is used as a stabiliser for emulsions, a binder and coating for tablets, and as an ingredient in cough drops and syrups. A soothing and softening agent, gum arabic is extensively employed in folk medicines. Among many other uses, it is used internally for coughs, diarrhoea, dysentery, haemorrhage, and externally to cover inflamed areas.

Gum arabic is used in cosmetics as an adhesive for face masks and powders, and to give a smooth feel to lotions.

Industrially, gum arabic is applied as an adhesive, as a protective colloid and safeguarding agent for inks, sensitiser for lithographic plates, coating for special papers, sizing agent for cloth to give body to certain fabrics, and coating to prevent metal corrosion. Gum arabic is also used in the manufacture of matches and ceramic pottery.

Acacia senegal wood is locally valued for fuel wood and charcoal, although biomass yield per unit of land area is not sufficient to plant it for this. In construction the wood is used locally for poles and fence-posts, the light-coloured wood for tool handles and dark heartwood for weaver's shuttles. Strong ropes are made from the bark fibres of the long surface roots. Where the trees are large (for example near the River Niger) they are cut into planks at least 12 cm thick for making canoes for hunting hippopotamuses. The wood is hard and heavy and takes a beautiful polish, with the sapwood being yellowish white and the heartwood nearly black and irregular. The wood is made into throwing-sticks which, in contrast to the Australian boomerang, can be made to fly straight and is used for hunting and displays at ceremonial events.

The dried and preserved seeds of A. senegal are used by people as vegetables. The leaves and pods are browsed by sheep, goats, camels, impala and giraffe. The seeds are sometimes eaten as a vegetable in India.

The flowers are a good source of honey, an important source of nutrition and income generation to support rural livelihoods in marginal lands.

Acacia senegal can help prevent desertification, through sand dune stabilisation and by acting as a wind break.

References & Credits

Burkill, H.M. (1995). The Useful Plants of West Tropical Africa: Vol. 3 Families J-L. Royal Botanic Gardens, Kew.

Fagg, C.W. & Allison, G.E. (2004). Acacia senegal and the gum arabic trade. FRP (Forestry Research Programme). Oxford Forestry Institute, Department of Plant Sciences.

Guillemin, J. B. A. Icones lithographicae plantarum australasiae rariorum. Paris (Treuttel et Wurtz), London, Strasbourg.

Spicer, N., Barnes, R. & Timberlake, J. (2007). Acacia handbook. DFID Forestry Research Programme, U.K.

Timberlake, J., Fagg, C.W., Barnes, R. (1999). Field guide to the Acacias of Zimbabwe. CBC Publishing, Harare.

As this focus example makes clear, *Acacia senegal* is a species with a wide variety of economic uses. In common with other major species, such as *Catharanthus roseus* (the Madagascan periwinkle) from Madagascar, it is an African species that has made a major contribution to the world and continues to be widely used. We now turn to the range of technology areas involved in patent activity for species from Senegal.

Technology Areas:

Table 2 provides a brief summary of the technology areas involved in patent activity for species from Senegal and is followed by a more detailed breakout of activity.

Table 2: Technology Areas

Table 2 reveals that biocides, associated with *Cordylobia anthropophaga*, top the technology areas involving species of direct relevance to Senegal. However, these are followed by pharmaceutical and medical preparations, foodstuffs, cosmetics and plants. In practice, single species may enjoy a career in different areas of science and innovation. Table 3 displays the technology areas associated with *Acacia senegal*.

Technology Areas Detail

Species Technology Detail

smetics aditional Medicines additives reetening Agents/Salts in Care ptides From Plants stechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners lickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks munological Disorders, Immunomodulators				
od Additives reetening Agents/Salts in Care ptides From Plants stechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners lokening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories				
reetening Agents/Salts in Care ptides From Plants otechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners ickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
in Care ptides From Plants otechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners lokening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
ptides From Plants stechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners ickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
otechnology/Genetic Engineering e Make Up smetics Containing Polysaccharides reetners lokening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
e Make Up smetics Containing Polysaccharides reetners ickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
smetics Containing Polysaccharides reetners lokening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
reetners ickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
ickening Agents With Gum ticancer combinant Dna Technology, Plants tiinflammatories rsticks				
ticancer combinant Dna Technology, Plants tiinflammatories isticks				
combinant Dna Technology, Plants tiinflammatories rsticks				
tiinflammatories isticks				
sticks				
munological Disorders, Immunomodulators				
ir Care	1			
eating Wounds, Scars, Burns				
eserving Living Parts	1			
tivirals				
tibiotics/Antibacterials				
em Cells/Plant Meristems	-			
in Disorders	1			
ke Up, Pigments				
nt Disorders e.g Arthritis				
smetics, Hydrogenation Products	1			
tipsoriatics				
timiarano				
	in Disorders ake Up, Pigments int Disorders e.g Arthritis osmetics, Hydrogenation Products ntipsoriatics ttimigrane	int Disorders e.g Arthritis psmetics, Hydrogenation Products ptipsoriatics	ake Up, Pigments int Disorders e.g Arthritis psmetics, Hydrogenation Products ntipsoriatics	int Disorders e.g Arthritis psmetics, Hydrogenation Products ntipsoriatics ntimigrane

Table 3: Species and Technology Areas

Acacia senegal	Artificial Sweeteners			
	Cosmetics			
	Traditional Medicines			
	Food Additives			
	Sweetening Agents/Salts			
	Skin Care			
	Peptides From Plants			
	Biotechnology/Genetic Engineering			
	Eye Make Up			
	Cosmetics Containing Polysaccharides			
	Sweeteners			
	Thickening Agents With Gum			
	Anticancer			
	Recombinant DNA Technology, Plants			
	Antiinflammatories			
	Lipsticks			
	Immunological Disorders, Immunomodulators			
	Hair Care			
	Treating Wounds, Scars, Burns			
	Preserving Living Parts			
	Antivirals	1		
	Antibiotics/Antibacterials			
	Stem Cells/Plant Meristems	1		
	Skin Disorders	1		
	Make Up, Pigments			
	Joint Disorders e.g Arthritis	1		
	Cosmetics, Hydrogenation Products	1		
	Antipsoriatics	1		
	Antimigrane			

Species Technology Detail

Table 3 usefully reveals the range of potential applications and technology area where a species and its components may be deployed. As such a species may be a focus of activity for a range of different products and markets. However, in the case of threatened species there will be a need for careful stewardship and conservation of target species.

Patent Claims:

Additional insights can be provided by examining the types of claims that are being made in relation to the species. A patent application may contain multiple claims but is required to contain only one invention. The first claim sets out the major focus of the claimed invention and frames all other claims. Patents are awarded for three main classes of invention:

- a) Compositions of matter
- b) Methods or processes
- c) Machines

In certain jurisdictions claims may also be permitted for new plant varieties either under standard patent legislation or under specific legislation (i.e. US Plant Patents)

Table 4 displays a summary of the top terms appearing in patent claims relating to genetic resources for Senegal.

Table 4: Terms Appearing in the First Claim of Patent Documents

Table 4 reveals that the top category of patent claims is for compositions of matter (compositions). Compositions are commonly extracts, compounds or combinations of ingredients (i.e. in pharmaceuticals or cosmetics and herbal medicines). Patent claims for compositions typically include a list of the compounds or ingredients that are the subject matter for protection. These claims are also commonly broadly constructed such that the use of compounds from the species, the genus, and in some cases the family, are incorporated into the scope of the claims. While composition of matter claims may be constructed in various ways, broad claims may well impinge upon the ability of producers from a country to export products containing the claimed components into markets where a patent is in force.

The second major category is for methods, such as methods of producing a plant, a compound or other desired outcome. Method claims are frequently more restrictive in their coverage of genetic resources because the genetic component is only claimed in so far that it is relevant to performing the method. That is, it is the method that is the focus of the invention. Therefore it is the method, and the use of the claimed genetic component in performing that method, that is the subject matter of protection.

A third category of patent activity involves claims to a process or processes. These types of claims are similar to methods claims. Typically, process claims focus on the process for producing a desired product (such as a chemical or a cosmetic). It is the process itself that is the focus of the invention (i.e. a process for producing gum arabic derivatives from *Acacia senegal*) rather than the genetic components. However, patent claims for processes are typically constructed so that a component produced using the process is included in the scope of protection. However, the same component produced using a different process would not logically fall within the scope of this type of patent.

Finally, references to plants or plant varieties can encompass a range of inventions. In the case of biotechnology and genetic engineering a plant produced through a genetic engineering approach may be claims by the applicant. In some jurisdictions, such as the United States, specific legislation may exist for plants such as 'patent like' US Plant Patents. These patents are confined to a single claim for a stable new variety of a given species and offer a lower form of protection than standard utility patents. We did not identify any examples of plant patents in the case of species of relevance to Senegal.

As this brief discussion of patent claims suggests it is important to pay close attention to both the type and the content of patent claims. In addition it is important to establish whether a patent has been granted and the jurisdictions where a patent has been granted and is in force. This type of analysis is particularly important when considering the potential development of products for markets. However, freedom to operate, patent validity, patentability, patent infringement and patent landscape analysis requires specialist analysis beyond the scope of the present report. Given the increasing importance of these issues for economic development the World Intellectual Property Organization has established a Patent Landscaping group under its development agenda that commissions specialist patent research at the request of member states.⁶

⁶ <u>http://www.wipo.int/patentscope/en/programs/patent_landscapes/</u>

Global Impacts and Global Markets:

We have seen above that a range of species are involved in patent activity of relevance to Senegal. However, it is important to note that many patent applications simply go nowhere. A means for identifying important patents is therefore needed. Here we discuss two measures: a) patent citations, and; b) patent families.

Table 5 displays the citation scores by species and assignee for species relevant to Senegal. When a patent is filed and published it becomes prior art. Later patent applications that make claims for the same invention will find that the scope of what they claim as new, involving an inventive step, and useful will be limited by the earlier claims. This is recorded in the patent system as a citation. The more often that a patent is cited by later patent applications is a measure of the importance and impact of that patent within the patent system. In some cases a single patent application may attract over a thousand citations.

In the case of Senegal Table 5 reveals a selection of citation scores for species of relevance to Senegal organised by assignee and displaying the relevant species. In this case the top scores for patents cited by later patents are for Bayer Cropscience and *Cordylobia anthropophaga* (the Mango fly). In addition we see high scores for BASF Plant Science for *Sinorhizobium saheli* (also known as *Ensifer saheli*) and *Rhizobium undicola*. Both of these species are nitrogen fixing bacteria that exist in the roots of legumes. Examples of highly cited patents in which these species appear include methods for the production of multiple unsaturated fatty acids in transgenic organisms, suggesting that these organisms are of particular relevance in genetic engineering. As might be expected, *Acacia senegal* also features prominently in the data but is more widely distributed across applicants. This diversity suggests the range of technological areas to which *Acacia senegal* contributes.

Other plant species in the data such as *Balanites aegyptiaca* and *Aframomum melegueta* exhibit much lower citation scores with 4 citations each. However, this type of data can produce insights into technological developments of relevance to the species, or where a species is directly referenced in citing patents, a means to track developments involving the species. For example, a citing document for *Aframomum melegueta* (WO2002062364A1) focuses on an Antiviral Composition from Medical Plants for Combating HIV/AIDs. In the case of *Balanites aegyptiaca* two citing patent applications from Ephyla SAS published in 2012 refer to a Plant Extract for the Production of a Slimming Composition and Method of Control for Slimming (FR2962907A1, WO2012017141A1). The documents do not make reference to Senegal but do provide additional indicators of potential uses of the species.

Citing	
nees	
Assig	

																																				908	006
																																					800
																									687												700
																																					600
																																					500
																																					400
																													242	247							300
			88		85																																100 200
	76	0		42	ω	8	8	4	47	4	8	76	49	49	9	5	0	0	19	4	9	0	31	е		4	4	6			19	19	10	24	4		0 10
Distribution	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Uncertain	Uncertain	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Uncertain	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Uncertain	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	
Data Type	Distribution	tion	c																-																		
Data	Ö	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution		Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	Distribution	
Kingdom Data	plantae Di	plantae Distribu	bacteria Distributio	plantae Distribution	plantae Distribution	fungi Distribution	fungi Distribution	bacteria Distribution	plantae Distribution	plantae Distribution	plantae Distribution	bacteria Distribution	bacteria Distribution	bacteria	plantae Distribution	plantae Distribution	plantae Distribution	plantae Distribution		animalia Distribution	plantae Distribution	plantae Distribution	plantae Distribution	plantae Distribution	animalia Distribution	bacteria Distribution	bacteria Distribution	animalia Distribution	bacteria Distribution	bacteria Distribution	bacteria Distribution	bacteria Distribution	plantae Distribution	plantae Distribution	animalia Distribution	animalia Distribution	
	enegal plantae																		Distribution																		

A second measure of the importance of patents is provided by the size of patent families. Table 6 ranks assignees based on counts of numbers of patent family members. A patent family is simply a set of patent documents that link back to an original parent filing (known as a "priority" filing). These patent documents can be filed anywhere in the world and can be tracked using unique identifiers known as INPADOC numbers that link back to the parent document.⁷ In contrast with patent citations that provide an indicator of the impact of a patent on other applications in the patent system, the size of a patent family reveals how important a patent is to applicants. The reason for this is that they must pay fees each time they file a patent application that is linked to the parent (priority) application. Table 6 ranks patent family data by species and shows the global map for the distribution of patent documents linked to the species.

Table 6: Patent Assignees and Family Members

⁷ INPADOC stands for the International Patent Documentation Centre which established the system. INPADOC is now part of the European Patent Office.

Patent family data of this type is useful in revealing the applicants who are most vigorously pursuing patent protection involving a species or, as is frequently the case, a group of species around the world. In this case BASF emerges top followed by Bayer Cropscience, both of whom are focusing on biocides for species such including *Cordylobia anthropophaga*. They are followed by Coca Cola which is focusing globally on sweeteners and gums including *Acacia senegal*.

This type of analysis can also be extended to the species level to consider the global impacts of patent activity and the position of patents involving a species in global markets. Plate 5 displays the results for patent family data by species and a global map of countries where family members linked to the species have been recorded. Please note that the map does not display the geographical locations for regional and international patent offices. Plate 5 is useful because it reveals what might be called the global reach or careers of species.

Plate 5 reveals that the species with the widest global reach are *Cordylobia anthropophaga* and *Acacia senegal*, followed by the bacteria used in biotechnology applications *Sinorhizobium saheli* and *Rhizobium undicola*. Our data suggests that two of the species are of interest for potential economic development, *Aframomum melegueta* and *Balanites aegyptiaca* are relatively neglected in the patent system relative to their potential longer term economic value. This observation is confirmed by wider research on the patent landscape for these two species in the period to mid 2013 in the main jurisdictions which revealed 174 total references to *Aframomum melegueta* and 75 for *Balanites aegyptiaca*. In addition we would recommend further research on *Holarrhena africana* which appears to be relatively neglected in the patent system.

As this analysis suggests, further research is desirable to establish the full patent landscape for species such as *Aframomum melegueta and Balanites aegyptiaca*. However, patent family mapping is also useful in identifying the major markets where protection is being sought for a given species or portfolio of species. Plate 7 reveals significant activity in markets around the world including South America and China. However, patent activity for Africa appears to be limited to South Africa, Egypt and Morocco. This suggests that opportunities may exist within internal markets in Africa where patent protection is unlikely to prove to be a barrier. At the same time, patent data also suggests countries where markets may exist for products involving biodiversity from Senegal.

Concluding Remarks:

This report has focused on identifying species in patents that originate from or are likely to originate from Senegal based on available distribution data. Our purpose has been to highlight the existing and potential role of these species for economic development in support of conservation. We would emphasise that our aim was not to identify the complete portfolio of patent activity for a particular species or genetic resources. In reality each of these species forms part of a landscape that stretches beyond the data presented in this report. Rather, the contents of this report and the next section presenting summaries for each species provide a basis for further exploration of the potential of Senegal species for economic development and conservation.

The next section presents a series of summary cards for each of the species identified in the course of this research. An online interactive version of these cards will be made available through abspat.net to facilitate further research.

Species Summary Tables

The following summary tables describe the species and patent activity involving the species. This data falls into two categories:

- a) Of Senegalese origin Patents where a named species has been identified as having been obtained from Senegal.
- b) With Senegalese distribution Patents where there is no reference to Senegal but distribution data suggests that the species may have originated from Senegal (Distribution).

In reading these tables, note that the number of documents refers to the number of documents retained during research on the origin of species of relevance to South Africa. It does not refer to the wider patent landscape for the species consisting of the total number of documents making reference to the species, or its components, in the global patent system.

Species may appear in patent documents in this list for a variety of reasons:

- 1. Because they are a focus of the invention;
- 2. Because they are incorporated into the claims of the invention;
- 3. Because they are a target of the invention (i.e. pathogens or pests)
- 4. Because a reference to a species, including in very limited cases a literature reference, indicates that the species is of potential interest for economic development and merits further investigation.

Species that fall into the first two categories will be included in the summary section.

This report focuses on identifying species that are of potential interest for economic development and conservation based on their appearance in patent data. The data in this summary section should not be used to draw conclusions about misappropriation or biopiracy.

Species name: Acacia senegal	ntae	white.						
Brief description of species: A pan-African species, native Indian subcontinent. Introduc records 36 countries with occ gum arabic, 70% of the world Sudan.	ed to many oth currences). The	ers (GBIF source of						
Distribution: Cosmopolitan		No of docume	ents: 447					
Patent documents reference	Patent documents reference numbers shown in appendix 2							

Of Senegalese origin

Species name: <i>Aframomum melegueta</i>	Kingdom: Plantae	
Brief description of species: Found across western Africa member of the ginger family Pharmaceutical use for sexua	of plants. Used in cuisine.	a street o
Distribution: Cosmopolitan	No of docume	ents: 1
WO2000035466A1		

With Senegalese distribution

Species name: <i>Allorhizobium undicola</i>	Kingdom: Bacteria		No Image Available
Brief description of species: Nitrogen fixing bacteria found natans.	l in the roots of Neptur	ia	
Distribution: Uncertain	No of	docume	ents: 14
EP2159289A2 US200729295 US2009106856A1 US200924 WO2006136596A2 WO20070 WO2007107516A2 WO20080	49514A1 US20093008 014844A2 WO200703	00A1 W	O2006024509A2

Of Senegalese origin

Species name: Balanites aegyptiaca	ntae			
Brief description of species: Balanites aegyptiaca is found region across Africa. It is one Senegal. Extracts can be use bilharzia	of the most co	mmon trees in		
Distribution: Cosmopolitan		No of docume	nts: 2	
WO2006137069A1 US20082				

Species name: Callosobruchus subinnotatus	Kingdom: Anir	nalia				
Brief description of species: The major insect pest of store sub-Saharan West Africa	oundnuts, in					
Distribution: Cosmopolitan		No of documents: 2				
EP2092826A1 US201007109						

With Senegalese distribution

Species name: Clostridium thermopalmarium	Kingdom: Bac	teria	No Image Available
Brief description of species: A new thermophilic species of which was isolated from palm	-		
Distribution: Uncertain		No of docume	nts: 14
EP0842298B1 US6107033A WO1997005282A2 WO2005 WO2009033114A2 WO2009 WO2010031793A2	034855A2 WO2	2006117019A1	WO2006119052A2

Species name: Cordylobia anthropophaga							
Brief description of species: Mango fly, cause of myiasis in tropical Africa	ss central sub						
Distribution: Cosmopolitan		No of docume	nts: 783				
Patent documents reference	n in appendix 2						

Species name: Desulfohalobium retbaense	Kingdom: Bacteria		No Image Available
Brief description of species: Sulphate reducing bacteria isolated from hypersaline lake in Senegal			
Distribution: Uncertain No of docume		nts: 4	
US6531281B1 US2008182318A1 WO2005044742A1 WO2009088760A1			

With Senegalese distribution

Species name: Halanaerobium saccharolyticum	Kingdom: Bacteria		No Image Available
Brief description of species: Sulphate reducing bacteria first isolated from hypersaline lake in the Crimea.			
Distribution: Cosmopolitan No of docume		nts: 2	
US2008311640A1 WO2006119052A2			

Species name: Holarrhena africana	Kingdom: Plar	ntae	
Brief description of species: A shrub or small tree native to much of west Africa. This species (a synonym for Holarrhena floribunda) yields large numbers of alkaloids			
Distribution: Cosmopolitan No of docu		No of docume	ents: 1
US2010040568A1			

Species name: <i>Hyalomma rufipes</i>	Kingdom: Animalia		
Brief description of species: Hard tick which may spread (fever to humans and infects I		hemorrhagic	
Distribution: Cosmopolitan No of docume			nts: 6
EP0120286A1 EP0249409A2 US2008306095A1 US2010179206A1 WO2005015993A1 WO2008154466A2			

With Senegalese distribution

Species name: Leptosphaeria senegalensis	Kingdom: Fungi		No Image Available
Brief description of species: Soil living fungus which can s	spread mycetoma in humans.		
Distribution: Uncertain No of do		No of documents: 54	
WO2005016386A1 EP1800684A1 US2002028479A1 US2 US2007167408A1 US2007248584A1 US2008248067A1 U US2009136546A1 US2010129385A1 US2010303819A1 U US2011021415A1 WO2001055445A1 WO2004020613A1 WO2005037293A1 WO2006036817A2 WO2006084319A1 WO2007071658A2 EP1567661B1 US2006292646A1WO2		S2009130109A1 S2011020374A1 WO2004108753A1 WO2006108241A1	

Species name: <i>Leptosphaeria thompkinsii</i>	Kingdom: Fungi		No Image Available
Brief description of species: Soil living fungus which can spread mycetoma in humans.			
Distribution: Cosmopolitan No of docume			nts: 3
EP1567661B1 US2006292646A1 WO2004047614A2			

Species name: <i>Merluccius cadenati</i>	Kingdom: Animalia			
Brief description of species: Synonym for Merluccius polli, Common name is the Benguela hake. A fish found around western Africa coast.				
Distribution: Cosmopolitan		No of documents: 2		

US5676986A WO1996019120A1

Species name: <i>Mycobacterium</i> <i>senegalense</i>	Kingdom: Bacteria		No Image Available
Brief description of species: Mycobacterium senegalense is a rapidly growing Mycobacterium species, and has been reported to cause disease among cattle in east Africa			
Distribution: Cosmopolitan	Distribution: Cosmopolitan No of docume		nts: 64
US6242584B1 WO19930042 EP0754044B1 EP1404659B US2003219788A1 US20040 US2004034021A1 US20040 US2005118624A1 US200514 US2010112004A1 US201018 US6406880B1 US6900204B US7122525B2 US7144893B WO1998034619A1 WO1998 WO2001092573A1 WO2003	5887481B1 EP1290224B1 US200403823 O1993004201A1 WO1998035029A1 WO 1404659B1 EP2210936A1 US200310451 US2004010504A1 US2004014749A1 US US2004063718A1 US2004220236A1 US US2005143374A1 US2006287396A1 US US2010183549A1 US5721209A US5786 S6900204B2 US6951718B1 US7067500B S7144893B2 US7252937B2 US7732589B 1 WO1998050576A1 WO1999022593A1 1 WO2003004479A1 WO2003045319A2 2 WO2003068918A2 WO2003101445A1		1999005316A1 13A1 US2003105086A1 S2004014750A1 S2005014157A1 S2008015344A1 6326A US5994346A 2 US7078399B2 2 US7741475B2 WO2001031061A1 WO2003051299A2

Species name: <i>Rhizobium undicola</i>	Kingdom: Bacteria		No Image Available
Brief description of species: Nitrogen fixing bacteria that exists in the roots of legumes.			
Distribution: Cosmopolitan		No of docume	nts: 70
EP1790731A2 EP1953235A2 EP2166067A2 EP2166068A2 EP2166089A2 EP2166090A2 EP2177605A1 EP2182056A2 US7842852B2 US200613704 US2007292953A1 US200802 US2008318790A1 US200902 US2009106856A1 US200902 US2010263088A1 US201012 WO2005083053A2 WO2005 WO2006069610A2 WO2006 WO2007031493A2 WO2007 WO2007107516A2 WO2008	2 EP2166069A2 2 EP2169052A2 1 EP2199304A3 42A1 US200713 76164A1 US200 19559A1 US200 49514A1 US200 92238A1 US200 79354A1 US200 098015A2 WO200 069710A1 WO200 039424A1 WO200	2 EP2166070A2 2 EP2169053A2 1 US7723574B2 36892A1 US20 08076166A1 US20 09038025A1 US20 09300800A1 US20 09300800A1 US20 005012316A2 W22006008099A2 2006136596A2	2 EP2166071A2 2 EP2172536A2 2 US7777098B2 07224661A1 S2008155705A1 S2009083883A1 S2010068761A1 S2010212034A1 VO2005014828A2 WO2006024509A2 WO2007014844A2

Species name: Sinorhizobium saheli	Kingdom: Bacteria		No Image Available
Brief description of species: Also known as <i>Ensifer saheli</i> that exists in the roots of legu			
Distribution: Cosmopolitan		No of docume	nts: 75
EP2166068A2 EP2166069A2 EP2166090A2 EP2169052A2 EP2182056A1 EP2199304A2 US2007224661A1 US200807 US2008318790A1 US200907 US2010192238A1 US201019 US2010279354A1 US772357 WO2005014828A2 WO20050 WO2006069610A2 WO20060 WO2008022963A2 EP14149 US2009083883A1 US200910	2 EP2080769A2 EP2096177A 2 EP2166070A2 EP2166071A 2 EP2169053A2 EP2172536A 1 US2006137042A1 US20071 76164A1 US2008076166A1 U 19559A1 US2010068761A1 U 99365A1 US2010212034A1 U 99365A1 US2010212034A1 U 74B2 US7777098B2 US78428 5083053A2 WO2005098015A2 5069710A1 WO2007087815A2 953B1 EP2159289A2 US20072 06856A1 US2009249514A1 U 5083066A2 WO2006024509A2		2 EP2166089A2 2 EP2177605A1 36892A1 S2008155705A1 S2010088776A1 S2010263088A1 52B2 WO2005012316A2 WO2006008099A2 WO2007093776A2 292953A1 US2009038025A1 S2009300800A1

Species name: Sinorhizobium terangae	Kingdom: Bacteria		No Image Available
Brief description of species: Also known as <i>Ensifer terang</i> that exists in the roots of legu	0	ixing bacteria	
Distribution: Cosmopolitan No of docume		No of docume	nts: 17
EP2159289A2 US2007292953A1 US2009038025A1 US20 US2009106856A1 US2009249514A1 US2009300800A1 W WO2006136596A2 WO2007014844A2 WO2007031493A2 WO2007107516A2 EP1397487B1 US6984510B2 US2004 WO2003000875A2			O2006024509A2 WO2007039424A1

Appendix 1. Distribution map of GBIF records in Senegal by kingdom.

Appendix 2.

1. Patent reference numbers for Acacia Senegal

WO2010115442A1	WO2007098593A1	WO2006010606A1	US2011008502A1
WO2010104687A2	WO2007094486A1	WO2005095625A1	US2011003340A1
WO2010100160A1	WO2007081442A2	WO2005090461A2	US2010310713A1
WO2010081204A2	WO2007070224A2	WO2005076902A2	US2010310688A1
WO2010069028A1	WO2007066234A2	WO2005074705A1	US2010297055A1
WO2010056293A1	WO2007066233A2	WO2005046632A3	US2010289164A1
WO2010056143A1	WO2007061912A2	WO2005046632A2	US2010272854A1
WO2010020351A1	WO2007061911A2	WO2005046574A2	US2010261874A1
WO2010012000A2	WO2007061908A1	WO2005042788A1	US2010233301A1
WO2010003263A2	WO2007061907A2	WO2005020932A2	US2010203077A1
WO2009156292A1	WO2007061900A1	WO2005001848A1	US2010196532A1
WO2009156290A1	WO2007061898A1	WO2005001433A1	US2010183793A1
WO2009147158A2	WO2007061873A1	WO2004097853A1	US2010151057A1
WO2009140568A1	WO2007061872A2	WO2004094590A2	US2010129305A1
WO2009119948A1	WO2007061871A1	WO2004089991A1	US2010125103A1
WO2009117625A2	WO2007061861A2	WO2004089392A1	US2010099640A1
WO2009077188A1	WO2007061860A1	WO2004075844A2	US2010047390A1
WO2009064061A1	WO2007061859A1	WO2004062370A1	US2010034923A1
WO2009037136A2	WO2007061858A1	WO2004037231A1	US2010031969A1
WO2009021661A1	WO2007061810A2	WO2004008872A2	US2010028521A1
WO2009003932A1	WO2007061809A2	WO2003092599A2	US2010028466A1
WO2009003931A1	WO2007061804A2	WO2003082312A1	US2010028285A1
WO2008150068A1	WO2007061803A1	WO2003080465A1	US2010012132A1
WO2008147727A1	WO2007061802A1	WO2003040398A2	US2010009010A1
WO2008147726A1	WO2007061797A2	WO2003024231A2	US2010008882A1
WO2008147723A1	WO2007061796A2	WO2002096211A1	US2009317467A1
WO2008134828A2	WO2007061795A1	WO2002072862A2	US2009297569A1
WO2008134712A2	WO2007061794A2	WO2002069981A1	US2009297461A1
WO2008111796A1	WO2007061757A1	WO2002043779A2	US2009291056A1
WO2008110225A1	WO2007061753A2	WO2002043509A1	US2009263523A1
WO2008107296A1	WO2007048193A1	WO2002008411A2	US2009253621A1
WO2008087304A2	WO2007034982A1	WO2002002607A2	US2009252698A1
WO2008074437A2	WO2007031139A1	WO2001078503A2	US2009200517A1
WO2008070368A2	WO2007022891A1	WO2001000682A1	US2009196842A1
WO2008057968A2	WO2007008708A2	WO2000057729A2	US2009175970A1
WO2008057967A2	WO2007001920A2	WO2000057721A2	US2009169654A1
WO2008057965A2	WO2006099217A2	WO2000051573A1	US2009137689A1
WO2008057964A2	WO2006095366A1	WO2000049052A2	US2009136439A1
WO2008057963A2	WO2006085329A2	WO1999057299A1	US2009098222A1
WO2008040872A2	WO2006082536A1	WO1999003978A1	US2009068255A1
WO2008034718A1	WO2006079815A1	WO1997049813A2	US2009060944A1
WO2008008766A2	WO2006079811A1	WO1997033485A1	US2009053378A1
WO2000000700A2 WO2007145655A1	WO2006059764A2	WO1997014785A2	US2009053366A1
WO2007142680A1	WO2006055526A2	WO1995002646A1	US2009053365A1
WO2007119172A2	WO2006053761A2	WO1994014328A1	US2009041712A1
WO2007117870A2	WO2006045056A2	WO1993017663A1	US2009035244A1
WO2007117281A2	WO2006042184A1	WO1990006343A1	US2009030185A1
WO2007100689A2	WO2006042176A1	US2011020443A1	US2009010958A1
			002003010330/11

US2009010861A1	US2007116826A1	US2004180020A1	US6790453B2
US2009005322A1	US2007116825A1	US2004175429A1	US6649151B2
US2008292775A1	US2007116824A1	US2004169298A1	US6639050B1
US2008292765A1	US2007116823A1	US2004161524A1	US6610810B2
US2008292668A1	US2007116822A1	US2004156811A1	US6593309B2
US2008249000A1	US2007116821A1	US2004073964A1	US6570062B1
US2008242834A1	US2007116820A1	US2004062845A1	US6548642B1
US2008220051A1	US2007116819A1	US2004059097A1	US6485945B1
US2008219951A1	US2007116800A1	US2004022895A1	US6479040B1
US2008124800A1	US2007112187A1	US2004009557A1	US6455512B1
US2008108710A1	US2007065394A1	US2004009555A1	US6429292B1
US2008107787A1	US2007039073A1	US2003232763A1	US6350594B1
US2008107776A1	US2007031566A1	US2003216481A1	US6312730B1
US2008107775A1	US2007020209A1	US2003210401A1	US6271001B1
US2008107747A1	US2007014744A1	US2003194472A1	US6265005B1
US2008096827A1	US2006269627A1	US2003180402A1	US6214349B1
US2008096826A1	US2006252120A1	US2003143709A1	US6193999B1
US2008081056A1	US2006240166A1	US2003138939A1	US6140121A
US2008044551A1	US2006216258A1	US2003103933A1	US6076461A
US2008038436A1	US2006204596A1	US2003072862A1	US5961703A
US2008031834A1	US2006194698A1	US2003049217A1	US5927192A
US2008019932A1	US2006177528A1	US2003027883A1	US5879906A
US2008003194A1	US2006172332A1	US2002194646A1	US5863301A
US2007275147A1	US2006165775A1	US2002193350A1	US5799577A
US2007243220A1	US2006147399A1	US2002189390A1	US5698222A
US2007243143A1	US2006134226A1	US2002164293A1	US5686385A
US2007231424A1	US2006127333A1	US7846424B2	US5609897A
US2007224321A1	US2006088574A1	US7838509B2	US5599670A
US2007218170A1	US2006083824A1	US7799341B2	US5597595A
US2007196309A1	US2006079467A1	US7695743B2	US5554386A
US2007193600A1	US2006079420A1	US7678768B2	US5432081A
US2007160738A1	US2006079419A1	US7674830B2	US5296245A
US2007160734A1	US2006067960A1	US7604807B2	US5268463A
US2007134391A1	US2006024346A1	US7531521B2	US5133979A
US2007134390A1	US2006019861A1	US7521079B2	US4981875A
US2007134375A1	US2005244441A1	US7514469B2	US4797145A
US2007128311A1	US2005208108A1	US7488503B1	US4708195A
US2007116841A1	US2005191389A1	US7473550B2	EP2241579A1
US2007116840A1	US2005169886A1	US7462710B2	EP2225932A1
US2007116839A1	US2005158440A1	US7407666B2	EP2177111A1
US2007116838A1	US2005148019A1	US7378506B2	EP2135525A2
US2007116837A1	US2005124805A1	US7297667B2	EP2108370A1
US2007116836A1	US2005096464A1	US7282224B1	EP2082728A2
US2007116835A1	US2005096281A1	US7108868B2	EP2042216A1
US2007116834A1	US2005074838A1	US7060299B2	EP1977757A2
US2007116833A1	US2005025737A1	US7022514B2	EP1956928B1
US2007116832A1	US2004247684A1	US7022352B2	EP1949886A1
US2007116831A1	US2004241444A1	US6998229B2	EP1916989B1
US2007116830A1	US2004230032A1	US6991817B2	EP1850889B1
US2007116829A1	US2004220119A1	US6896894B2	EP1845124A1
US2007116828A1	US2004186062A1	US6841644B2	EP1829548B1
US2007116827A1	US2004180032A1	US6794495B1	EP1829548A1

EP1818060A1	EP1612225A1	EP1421989A1	EP0511932A2
EP1772483A1	EP1611159B1	EP1407679A1	EP0455597A1
EP1764085A1	EP1565065B1	EP1366737A1	EP0307599A1
EP1751225B1	EP1505078B1	EP1364639A2	EP0232988A1
EP1734056A1	EP1505078A1	EP1228747A2	EP0228999A2
EP1704853A2	EP1503778B1	EP0897961A1	
EP1666502A1	EP1485307B1	EP0836111A1	
EP1623437B1	EP1421989B1	EP0548901A1	

2. Patent reference numbers for Cordylobia anthropophaga

110004040700744	MO000704 4000 4 4		
US2010167927A1	WO2007014899A1	EP0585477A1	EP1977645A1
EP1893020B1	WO2007017414A1	EP0627411A1	EP1977646A1
EP1937072B1	WO2007017501A2	EP0647631A1	EP1982595A1
EP2069306B1	WO2007060120A1	EP0653417A1	EP1988080A1
US7674827B2	WO2007060121A1	EP0653418A1	EP1992228A1
US7754749B2	WO2007071585A1	EP0656352A1	EP1992614A1
US2007184983A1	WO2007077246A2	EP0673923A1	EP2001297B1
US2008161367A1	WO2007110435A2	EP0691332A1	EP2001873B1
US2008194404A1	WO2007118896A1	EP0757042A1	EP2003975B1
US2008194641A1	WO2007122163A2	EP0934935A1	EP2014168A1
US2008200528A1	WO2007135029A1	EP0945431A2	EP2014661A1
US2008227635A1	WO2008000834A1	EP0974578A2	EP2018806A1
US2008287293A1	WO2008017649A1	EP1110453A1	EP2018807A1
US2008293569A1	WO2008031824A1	EP1172362A1	EP2019095A1
US2008300313A1	EP0320733A2	EP1319336A1	EP2020413A1
US2008312085A1	EP0347694A1	EP1420644B1	EP2030983A1
US2009075819A1	EP0372330A1	EP1432308B1	EP2033515A1
US2009124498A1	EP0377892A1	EP1465485B1	EP2033516A1
US2009131256A1	EP0378080A1	EP1501353B1	EP2039252A1
US2009136551A1	EP0378755A1	EP1691607B1	EP2039770A2
US2009203524A1	EP0386572A1	EP1694122B1	EP2039771A2
US2009280982A1	EP0388665A1	EP1696728B1	EP2039772A2
US2009305886A1	EP0395985A2	EP1761516B1	EP2042492A1
US2010041700A1	EP0400340A1	EP1812464B1	EP2042507A1
US2010056469A1	EP0407873A1	EP1819668B1	EP2045240A1
US2010120616A1	EP0412391A1	EP1841317B1	EP2048952B1
US2010137375A1	EP0414059A1	EP1849364A1	EP2054427B1
US2010167925A1	EP0422597A2	EP1860941B1	EP2060571A1
US2010234457A1	EP0447891A1	EP1875804A1	EP2065370A1
US2010280078A1	EP0457023A1	EP1886564A1	EP2070923A1
US2010292323A1	EP0457204A1	EP1888533B1	EP2092824A1
US2010298138A1	EP0459285A1	EP1891857A1	EP2096114A1
WO2006002984A1	EP0463488A1	EP1905300A1	EP2103615A1
WO2006045522A1	EP0473041A1	EP1905302A1	EP2107058A1
WO2006100227A1	EP0477631A1	EP1915344B1	EP2123159A1
WO2006100271A1	EP0486804A2	EP1928593B1	EP2133140A2
WO2006100288A2	EP0498179A1	EP1940849B1	EP2184275A1
WO2006125637A1	EP0508190A1	EP1952690A2	EP2184280A1
WO2006128863A1	EP0528245A1	EP1965636B1	EP2186791A1
WO2006128867A1	EP0543238A1	EP1977644A1	EP2186805A1
	21 00 10200/11		212100000/(1

EP2193713A1	US6329359B1	US2007129442A1	US2009104222A1
EP2196461A1	US6362192B1	US2007149582A1	US2009105073A1
EP2198709A1	US6372766B1	US2007259919A1	US2009137393A1
EP2201838A1	US6380231B1	US2007259962A1	US2009143228A1
EP2201841A1	US6414031B1	US2007265231A1	US2009143431A1
EP2204094A1	US6451790B1	US2007281864A1	US2009143482A1
EP2210490A2	US6509379B1	US2007298965A1	US2009181947A1
EP2223602A1	US6514998B1	US2008031902A1	US2009197918A1
EP2227951A1	US6537989B1	US2008063678A1	US2009209598A1
EP2232995A1	US6548451B1	US2008064730A1	US2009215624A1
EP2236505A1	US6583090B1	US2008113998A1	US2009221423A1
EP2239331A1	US6605631B1	US2008132487A1	US2009221596A1
EP2246335A1	US6693124B1	US2008132558A1	US2009239906A1
EP2253214A1	US6869914B2	US2008146448A1	US2009239900A1 US2009247511A1
EP2258177A2	US7056941B1	US2008153702A1	US2009247551A1
EP2264008A1	US7084158B2	US2008161187A1	US2009247597A1
EP2266973A1	US7087239B2	US2008161403A1	US2009253749A1
US5047408A	US7354993B2	US2008171658A1	US2009270259A1
US5106852A	US7544637B2	US2008176826A1	US2009275471A1
US5166216A	US7563921B2	US2008199606A1	US2009298828A1
US5194662A	US7655600B2	US2008200335A1	US2009305891A1
US5221684A	US7678797B2	US2008207445A1	US2009306147A1
US5250553A	US7695728B2	US2008207447A1	US2009317433A1
US5286750A	US7700639B2	US2008214394A1	US2009320166A1
US5292759A	US7759381B2	US2008220970A1	US2009326012A1
US5294628A	US7763640B2	US2008221109A1	US2010004125A1
US5294639A	US7820209B2	US2008221168A1	US2010004127A1
US5298515A	US7834003B2	US2008227636A1	US2010009848A1
US5366984A	US7855309B2	US2008227646A1	US2010009850A1
US5387607A	US7871960B2	US2008234386A1	US2010010050A1
US5534653A	US2001031865A1	US2008249182A1	US2010010051A1
US5538940A	US2003049296A1	US2008255196A1	US2010010058A1
US5545664A	US2003148887A1	US2008260789A1	US2010016155A1
US5563168A	US2004014784A1	US2008261812A1	US2010016156A1
US5565490A	US2004249164A1	US2008274885A1	US2010022389A1
US5696161A	US2004259736A1	US2008280953A1	US2010022469A1
US5705516A	US2004260097A1	US2008280992A1	US2010022559A1
US5912243A	US2004266626A1	US2008293824A1	US2010028295A1
US6031110A	US2005049146A1	US2008300280A1	US2010029478A1
US6187812B1	US2005070576A1	US2008305955A1	US2010029698A1
US6187816B1	US2005144831A1	US2008306297A1	US2010041552A1
US6200997B1	US2006014805A1	US2008312295A1	US2010041682A1
US6207692B1	US2006069083A1	US2008312297A1	US2010041727A1
US6211190B1	US2006166984A1	US2009012143A1	US2010047203A1
US6225349B1	US2006173044A1	US2009023752A1	US2010048646A1
US6228810B1	US2006233848A1	US2009029855A1	US2010048700A1
US6232317B1	US2006242734A1	US2009042994A1	US2010062937A1
US6232339B1	US2006264446A1	US2009069179A1	US2010062940A1
US6239074B1	US2007066627A1	US2009069317A1	US2010064578A1
US6265613B1	US2007071782A1	US2009082389A1	US2010069242A1
US6310071B1	US2007093543A1	US2009099192A1	US2010069243A1
US6316459B1	US2007117868A1	US2009099247A1	US2010069244A1
			38

US2010077512A1	US2011003875A1	WO2004013112A1	WO2007017518A2
US2010081698A1	US2011009261A1	WO2004056182A1	WO2007031213A1
US2010087542A1	US2011021539A1	WO2004080170A2	WO2007031508A1
US2010093531A1	USRE37839E1	WO2004105488A1	WO2007031512A2
US2010093532A1	USRE37873E1	WO2005025315A1	WO2007031513A1
US2010093715A1	WO1993006090A1	WO2005035486A1	WO2007031526A1
US2010099717A1	WO1993014079A1	WO2005040143A1	WO2007033931A1
US2010105752A1	WO1993016985A1	WO2005040162A1	WO2007036494A2
US2010113268A1	WO1994011334A1	WO2005053402A2	WO2007039555A1
US2010120879A1	WO1995024403A1	WO2005053403A2	WO2007045588A1
US2010130565A1	WO1996001256A1	WO2005058040A1	WO2007048545A2
US2010137134A1	WO1996001258A1	WO2005063724A1	WO2007048730A1
US2010137233A1	WO1996007633A1	WO2005077169A1	WO2007051756A1
US2010144672A1	WO1996016029A1	WO2005077170A1	WO2007054558A2
US2010144859A1	WO1996016044A1	WO2005105748A1	WO2007057407A2
US2010167922A1	WO1996016047A1	WO2006000358A1	WO2007060220A2
US2010167923A1	WO1996016943A1	WO2006000592A1	WO2007071609A1
US2010167931A1	WO1996035690A1	WO2006007998A1	WO2007073856A2
US2010168226A1	WO1996037477A1	WO2006029799A1	WO2007074042A2
US2010179194A1	WO1997001544A1	WO2006037475A1	WO2007080066A2
US2010190647A1	WO1997001545A1	WO2006052806A2	WO2007082802A1
US2010197494A1	WO1997010715A1	WO2006053643A1	WO2007082841A2
US2010197737A1	WO1997016415A1	WO2006056333A1	WO2007085565A1
US2010204045A1	WO1997016427A1	WO2006056433A2	WO2007090434A1
US2010204048A1	WO1998012179A1	WO2006056462A1	WO2007093227A1
US2010210459A1	WO1998038857A1	WO2006058730A1	WO2007093232A1
US2010215777A1	WO1998041498A1	WO2006061146A1	WO2007093530A1
US2010216792A1	WO1998047886A1	WO2006061147A1	WO2007093599A1
US2010210732A1	WO1998056774A1	WO2006063700A1	WO2007096058A1
US2010222219A1	WO1999005139A1	WO2006077070A1	WO2007100165A1
US2010227009A1	WO1999006379A1	WO2006079480A1	WO2007101539A2
US2010227761A1	WO1999020615A2	WO2006087162A1	WO2007101540A1
US2010227762A1	WO1999021833A1	WO2006089633A2	WO2007101542A1
US2010234221A1	WO1999031070A1	WO2006089876A1	WO2007101544A2
US2010234312A1	WO1999040082A2	WO2006092409A2	WO2007101545A1
US2010240705A1	WO1999046246A1	WO2006094526A1	WO2007101546A2
US2010248961A1	WO1999048366A1	WO2006094978A2	WO2007101601A2
US2010249194A1	WO1999050243A1	WO2006097279A1	WO2007104726A1
US2010256195A1	WO1999055156A2	WO2006097488A1	WO2007110355A2
US2010261608A1	WO1999059982A2	WO2006097489A1	WO2007110418A2
US2010267703A1	WO2000021942A1	WO2006119876A1	WO2007112842A1
US2010279873A1	WO2000042039A1	WO2006122949A1	WO2007112843A1
US2010298136A1	WO2000042033A1 WO2001036399A1	WO2006125641A2	WO2007112845A1
US2010298137A1	WO2002089587A1	WO2006125745A2	WO2007112846A1
US2010298145A1	WO2002094793A1	WO2006125748A1	WO2007112847A2
US2010298267A1	WO2003017764A1	WO2006128870A2	WO2007112848A2
US2010305124A1	WO2003028453A1	WO2006133823A1	WO2007112893A2
US2010310518A1	WO2003029222A1	WO2007006670A1	WO2007112894A1
US2010311582A1	WO2003039249A2	WO2007014913A1	WO2007112895A1
US2010311593A1	WO2003039255A1	WO2007017040A2	WO2007113119A1
US2010324103A1	WO2003059067A1	WO2007017433A2	WO2007113322A2
US2011003690A1	WO2003090530A1	WO2007017502A2	WO2007115643A1
			39

WO2007115644A1	WO2007131680A1	WO2008003403A2	WO2008022937A1
WO2007115646A1	WO2007140881A1	WO2008005489A2	WO2008031512A1
WO2007115647A1	WO2007144100A1	WO2008009360A2	WO2008031712A2
WO2007121868A1	WO2007147701A1	WO2008017388A1	WO2008031870A2
WO2007122264A2	WO2007147888A1	WO2008019723A1	
WO2007126691A2	WO2008000377A2	WO2008019784A2	